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Generalized adiabatic invariants in classical mechanics 
L. NAVARRO and L. M. GARRIDO 
Instituto de Fisica Tebrica, Barcelona, Spain 
MS.  received 9th October 1967, in reaised fo rm 27th Decembev 1967 

Abstract. In  this paper we present a method to obtain adiabatic invariants of any 
desired order in classical mechanics. The technique is quite similar to the one used 
in quantum mechanics, but the role of the ‘spinning axis representation’ is played 
now by a special set of canonical transformations. 

1. Introduction 
In  quantum mechanics three adiabatic theorems are known which allow one to solve 

practically any problem related to this topic. The  first one (see Messiah 1960) states that 
a system which is initially in an eigenstate of a Hamiltonian that has a slow time dependence 
will remain, at the end of the evolution, in the eigenstate of the instantaneous Hamiltonian 
that is deduced from the initial one by continuity. The  second adiabatic theorem (Garrido 
and Sancho 1962) investigates the conditions under which the preceding statement is 
valid to mth order in the powers of 1/T, where T i s  the long time interval during which the 
evolution of the system takes place. The  third one, or generalized adiabatic theorem 
(Garrido 1964), is really a method to obtain adiabatic invariants of any desired order 
without imposing special conditions upon the derivatives of the Hamiltonian. 

In  classical mechanics Lenard (1959) proved adiabatic invariance to all orders for the 
classical one-dimensional non-linear oscillator. There exist also operational techniques 
(Garrido 1960, 1961) which permit the introduction of the interaction picture. It is possible 
(Garrido and Gasc6n 1962) to give general criteria to be satisfied by a slowly time-dependent 
Hamiltonian in order to possess adiabatic invariants of the mth order. Summarizing, we 
may therefore say that, in a certain sense, an extension of the two first quantum-mechanical 
adiabatic theorems, valid in classical mechanics, has been possible. 

But the very important generalized adiabatic invariance or, in other words, a procedure 
to obtain adiabatic invariants to any desired order without imposing special conditions 
upon the Hamiltonian, has not been achieved in classical mechanics. That will be the 
principal aim of the present work. I t  will be observed that the procedure is quite similar 
to the one used in quantum mechanics. 

The  paper starts with the introduction of some well-known properties of the action and 
angle variables in order to fix the notation that we are going to use. We then find the 
generalized adiabatic invariants. Finally, the paper shows how the adiabatic invariance of 
mth order in classical mechanics (Garrido and Gasc6n 1962) can be deduced from the 
present generalized one by simply imposing the appropriate extra conditions upon the 
derivatives of the Hamiltonian. 

I n  the present work we shall assume that the parameter T is such that 1/T -+ 0. It 
implies an adiabatic or slow change in the evolution of the system. We shall say that Q 
is an adiabatic invariant to the mth order, if it is possible to find a positive constant :%I such 
that for the change AQ of the quantity Q in the time interval T the inequality 

holds (Lenard 1959). 

2. A canonical transformation 
For the sake of simplicity we restrict ourselves to study classical systems with only one 

degree of freedom whose motion is periodic. It is well known that this can occur in two 
different ways: libration (closed orbits in phase space) or rotation (periodic orbits in phase 
space). The degenerate systems will be excluded from the present treatment. 
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The action variable J is defined as 

J = $ P d p  (1) 

where $ indicates integration over one complete period corresponding to the q. If q is 
cyclic, p is constant and 

The  generalized coordinate conjugate to J is known as the angle variable w .  
Let us consider a system whose Hamiltonian depends explicitly, though slowly, on 

time. We designate by H(T) the value of the Hamiltonian at the instant of time t = TT,  where 
T is a large parameter. The  rate of evolution of the system from the time origin time t = 0 
until the instant t = T depends only on the parameter T ,  since the Hamiltonian is a function 
of the fictitious time T and indirectly, through the definition of T only, of the real time t. 

The  Hamilton-Jacobi function which generates the canonical transformation from q 
and p to w1 and J1 is defined by 

J = 2np = const. 

where we use the suffix to prepare the notation for generalizing the procedure. The  new 
Hamiltonian (ter Haar 1961) is 

i a  
H,(w, ,J1;7)  = H(J,;T)+---F,(P, w1;T) (3)  T aT 

since H does not depend on wl, after the canonical transformation Fl has been performed. 

3. Generalized adiabatic invariants 
Equation (3) can be interpreted as follows: H(J,; T )  represents the unperturbed 

Hamiltonian and ( l /T)(a/&)F1 a perturbation which is small because 1/T --f 0. We call 
H(Jl ; T )  ‘unperturbed motion’ because it can be easily solved, since w1 is a cyclic variable. 
The  solution is trivial : 

Jd.1 = J lW)  

w,(T) = wl(0) + T J H(Jl;  7’) dT’ 
0 aJ1 

(4) 

and the constants of motion of H(J l ;  T )  represent adiabatic invariants of the first order, 
although the change can be evaluated by the perturbation term (l/T)( 2/&-)F1. 

I n  order to generalize the foregoing procedure, we are going to treat H,(w,, J1 ;  T )  

as we have treated H(q, p ; T ) .  The reader may like to compare this point with the analogous 
one in the demonstration of the generalized adiabatic invariance in quantum mechanics 
(Garrido 1964). 

We now define the action variable J1 as 

J 2 ( 7 )  = (j J1 d o ,  ( 5 )  

where the integration is to be carried over a complete period of wl. In  the same way we 
perform the change of variables from ( w l ,  J1) to (w2,  J2) by means of the canonical trans- 
formation Fz(w,, w 2 ;  T ) ,  defined by - 

a 
awz 

J2 = - -F2(wl ,  w 2 ;  T )  
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w 2  being the angle variable which represents the generalized coordinate conjugate to J2. 
The Hamiltonian in terms of w2 and J ,  is 

1 %  
T 8-r H2(wz, J2;7) = Hl(Jz;T)+----2(WI, w z ; T )  ( 7 )  

where we have taken into account that, after the transformation F,  has been performed, 
H1 will not contain w,. 

Because F2 represents a canonical transformation, the equations of motion hold in 
the new variables with the canonical form. Thus we obtain 

The same result (8) can be obtained by direct derivation in (6). From (4) and (7), by 
following perturbation theory in classical mechanics, one can easily deduce the relation 

1 
T J2(7) = Jl(0) +- Gl(4 (9) 

where G,(T) is a bounded function which does not play an important role in the present 
work (see, for instance, ter Haar 1961). Comparison between (8) and (9) allows us to write 

The  last expression means that the perturbation term in (7) is of the order of 1/T2. 
The solutions for the unperturbed motion are 

J2(7) = J 2 ( 0 )  
PT 2 

~ ~ ( 7 )  = w2(0) + T J 2- H1(J2; 7’) d7‘ 

0 aJ2  

because w2 is a cyclic variable. Then the constants of the motion represented by (11)  are 
adiabatic invariants of second order. 

If we perform successively m canonical transformations of type (2) and (6), the last one 
will be defined by 

being 

where 4 indicates integration over one complete period corresponding to the wm-z  and 
0,- respectively. The  final Hamiltonian will be 

The solutions of the unperturbed motions are 

Jm(7) = J m ( 0 )  
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because w, is a cyclic variable. As all the performed transformations are canonical, Hamilton 
equations of motion hold. Therefore we obtain 

__ - 

T h e  formula analogous to (9) will now be 
1 

J m ( 7 )  = J m  - l(0) + G m  - 1(~) 

because, in the same way that the change from H to Hl is realized by means of a perturba- 
tion proportional to 1/T and from H ,  to H ,  by another perturbation proportional to 1/T2, 
the transformation of Hm-2 (whose action variable is J,- 1) into H,- (whose action variable 
is J,) implies a perturbation proportional to l /Tm- l .  Hence, combining (16) and (17)) we 
find 

We arrive at the conclusion that the perturbation which appeared in (14) is of order 
l/T", and therefore the constants of the unperturbed motion (15) are generalized adiabatic 
invariants to mth order. These are expressed as functions of the last coordinates (U,, Jm) .  
T o  obtain the same quantities in terms of (4,  p ) ,  it is necessary to realize the corresponding 
inverse transformations ; one can clarify that with the following scheme: 

It is interesting to observe that, as in quantum mechanics, the generalized adiabatic 
invariants deduced above depend explicitly on time, because the F, transformation functions 
depend explicitly on the fictitious time T .  

4. Comparison with the adiabatic invariance of mth order 
In  a preceding paper (Garrido and G a s c h  1962) it was shown that all the constants of 

motion of the initial Hamiltonian are adiabatic invariants of order m of the slowly varying 
Hamiltonian, provided that its m- 1 first time derivatives are zero at the beginning and 
at the end of the interval T ,  which is supposed to be very large. ('The analogous adiabatic 
theorem to mth order exists in quantum mechanics (see, for example, Garrido and Sancho 
1962).) The comparison between this result and the present generalized adiabatic invariance 
of mth order will be reduced to showing that one obtains the adiabatic invariants of mth 
order from the generalized ones of the same order, when we add to this second invariance 
the extra conditions that the m- 1 first time derivatives of the Hamiltonian are zero 
initially and finally. 

In  order to do this, we recall that for periodic motions the action variable is an adiabatic 
invariant of order m, provided that the m- 1 first time derivatives of the Hamiltonian are 
zero at the beginning and at the end of the large interval during which the evolution of the 
system takes place. This condition may be written as 

J1(.) = Jl(0)+O - . i:$ 
Furthermore, we shall suppose, as usual (see, for example, ter Haar 1961) that the 

system is periodic in w1 with a period of unity, w1 being no longer a strictly linear function 
of time. Therefore, combining (2) with (20) and taking into account the above-mentioned 
linearity of w l ,  we find 



330 L. Navarro and L. M.  Garrido 

The last expression indicates that the perturbation in (3) is now of the order of l/Tm. 
Hence the constants of motion represented by (4) are direct adiabatic invariants of mth 
order. 

In  the same way, by applying perturbation theory, one obtains from (3) and (21) 

Equations (6) and (22) yield the expression 

From (7) and (23) we deduce that the constants of unperturbed motion in (7), whose 
solutions are represented by (11)) are adiabatic invariants of mth order. This process can 
be repeated with the remaining Hamiltonians H,, H4,  ..., Hm-l, in the same way as with 
Hl and H,. The  degree of approximate validity of their respective adiabatic invariants 
cannot be improved: they are all adiabatic invariants of mth order. We have thus shown 
that the adiabatic invariance of mth order (which requires extra conditions imposed upon 
the Hamiltonian) can be obtained from the present generalized adiabatic invariance (which 
does not fulfil any special condition) by adding to this second adiabatic invariance the 
appropriate extra conditions mentioned above. 

5. Conclusion 
The present paper provides a general method for obtaining adiabatic invariants of any 

desired order in classical mechanics. Its application does not require special conditions 
to be imposed on the Hamiltonian. These invariants depend explicitly on time. When the 
m- 1 first time derivatives of the Hamiltonian are zero initially and finally, the method 
enables us to deduce the well-known adiabatic invariance to mth order. I n  this case the 
quantities which are adiabatic invariants do not depend on time. T o  determine such 
quantities it is not necessary to iterate the procedure. Only the first canonical transforma- 
tion must be performed, because the application of F,, F,, .,., F, does not improve the 
degree of approximation of the adiabatic invariance, as we have shown. 
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